
Launching a Odoo Container
How to launch your own odoo 13. Follow the step-by-step guide below to set up the necessary
prerequisites and deploy the odoo13.

by dhruvraj

https://gamma.app

Prerequisites
Before you begin, ensure that you have Docker and Docker Compose installed on your system.
You can find installation instructions for Docker and docker compose .

Please complete this step before beginning.

1 .Create a Folder: Begin by making a new folder named "odoo_docker" on your desktop.

2. Organize Your Files: Gather all the necessary files such as docker-compose.yaml,
odoo.conf, dump.sql, and the addons folder into the "odoo_docker" folder. Keep
everything well-organized.

refer the documentation and install docker and docker compose into your system

This is tested on version

Docker version : 24.0.6

Docker-compose : 1.22.0, build f46880fe

install docker :

sudo apt update

sudo apt install docker.io

sudo systemctl start docker

sudo systemctl enable docker

Download the Docker Compose binary:

sudo apt install docker-compose

Verify Docker Compose installation:

docker-compose --version

verify docker version :

docker --version

https://gamma.app

NOTE : Each project will come with its own docker-compose.yaml file,
featuring different images. The provided docker-compose file below serves as a
reference for understanding.

Steps

Get the docker-compose.yml file form the following source .1.

Place the docker-compose file into the desired directory with all the requirement like odoo
addons folder and Postgres databasefile.sql

2.

Below is the custom Docker Compose file required to set up Odoo 13 using Docker containers.
We will explain each section and line in detail.

3.

https://gamma.app

Docker-compose.yaml
You can customise the Docker Compose file according to your specific needs and
configurations

Use version � of Docker Compose syntax for better compatibility and features.

version: '�'

Define the services (containers) to be run.

services:

 # PostgreSQL database service.

 db:

 image: postgres:�� # Use the PostgreSQL version �� image from Docker Hub.

 container_name: postgresdb # Set the container name to "postgresdb".

 environment:

 POSTGRES_USER: odoo # Set PostgreSQL username to "odoo".

 POSTGRES_PASSWORD: odoo # Set PostgreSQL password to "odoo".

 restart: always # Restart the container always if it stops.

 volumes:

 - postgres_data:/var/lib/postgresql/data # Mount a volume for PostgreSQL data storage.

 ports:

 - "����:����" # Map host machine port ���� to container port ���� for PostgreSQL.

 # Odoo application service.

 odoo_homecare:

 image: custom image # Use the specified image "custom image ".

 depends_on:

 - db # Ensure the "odoo_homecare" service starts after the "db" service.

 container_name: odoo_custom # Set the container name to "odoo_custom".

 ports:

 - "����:����" # Map host machine port ���� to container port ���� for Odoo.

 environment:

 POSTGRES_USER: odoo # Set PostgreSQL username to "odoo".

 POSTGRES_PASSWORD: odoo # Set PostgreSQL password to "odoo".

 POSTGRES_HOST: db # Set the hostname for the PostgreSQL server.

 POSTGRES_PORT: ���� # Set the port for the PostgreSQL server.

 command: ["odoo", "-c", "/etc/odoo/odoo.conf"] # Specify the command to run Odoo with the

given configuration file.

 volumes:

 - odoo_data:/var/lib/odoo # Mount a volume for Odoo data storage.

 - ./addons:/mnt/extra-addons # Mount a volume for additional Odoo addons.

 restart: always # Restart the container always if it stops.

Define named volumes for persistent data storage.

volumes:

 postgres_data: # Volume for PostgreSQL data.

 odoo_data: # Volume for Odoo data.

End of the Docker Compose file.

https://gamma.app

enableStart Your Application
In the same directory as your docker-compose.yml file, run the following command to start your
services:

Copy command

docker-compose up

https://gamma.app

After launching containers we will
restore database into PostgreSQL
container

Copy the SQL Dump File to the Container:1.

You need to copy your SQL dump file into the PostgreSQL container. You can use the docker cp
command to do this. Replace your_dump_file.sql and container_name_or_id with your actual
file and container information:

Copy code and run on terminal :

docker cp /path/to/your/database_dump.sql your_postgres_container:/tmp/

In my scenario, since I have kept both my Docker Compose file (docker-compose.yaml) and my
Dockerfile in the same directory, I have used the current directory, which is denoted by ./

docker cp ./dump.sql postgresdb:/tmp/

2.Access the PostgreSQL Container:

Access the PostgreSQL container by running an interactive shell:

Copy code

docker exec -it your_postgres_container bash

In my case :

docker exec -it postgresdb bash

3.Restore the Database Using psql:

Once inside the container, you can use the psql command to restore the plain text SQL dump.
Replace your_database_name with the actual name of the database you want to restore and
/tmp/database_dump.sql with the path to the dump file inside the container:

Copy code:

psql -U user_name_here -d your_database_name -a -f /tmp/database_dump.sql

in my case , As i have set the user name to "odoo" in the compose file and the database name is
also "odoo"

psql -U odoo -d odoo -a -f /tmp/dump.sql

In my case Here, -U postgres specifies the PostgreSQL superuser (you may need to change this if
you're using a different user), -d your_database_name specifies the target database, -a specifies
that the commands should be echoed, and -f specifies the input file to execute.

3.Exit the Container:

After the restoration is complete, exit the container:

Copy code:

exit

https://gamma.app

After Database restoration the
container should be Restarted
To restart all container we can use this command in the same directory

 docker-compose restart

https://gamma.app

Access Your Application
Your services are now running. You can access your web service at

http://localhost:����/

https://gamma.app

